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Abstract. A chemical system displaced not far from equilibrium is shown to offer a physical realization of
a linear sequential digital logic machine. The requirement from the system is that its state is described
by giving the current values of the concentration of different chemical species. The time evolution is
therefore described by a classical master equation. The Landau-Teller process of vibrational relaxation of
diatomic molecules in a buffer gas is used as a concrete example where each vibrational level is taken to
be a distinct species. The probabilities (= fractional concentrations) of the species of the physicochemical
system are transcribed as words composed of letters from a finite alphabet. The essential difference between
the finite precision of the logic machine and the seemingly unbounded number of significant figures that
could be used to specify a concentration is emphasized. The transcription between the two is made by
using modular arithmetic that is, is the arithmetic of congruence. A digital machine corresponding to the
vibrational relaxation process is constructed explicitly for the simple case of three vibrational levels. In
this exploratory effort we use words of only one letter. Even this is sufficient to achieve an exponentially
large number of memory states.

PACS. 31.15.-p Calculations and mathematical techniques in atomic and molecular physics (excluding
electron correlation calculations) – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)
– 02.10.De Algebraic structures and number theory

1 Introduction

The physicochemical processes we here consider are de-
scribed by the methods of chemical kinetics: the variables
are concentrations of different species. When the system is
displaced from equilibrium the concentrations will evolve
in time. A simple case of such time evolution is first or-
der kinetics when the rate of change of the concentration
is proportional to the value of the concentration. An ex-
ample of a process where there are several species is the
vibrational relaxation of diatomic molecules dispersed in a
large excess of a monoatomic buffer gas. For this example
the different species are the different vibrational levels of
the diatomic molecule. Various external perturbations can
pump a vibrational ladder of levels away from equilibrium.
For example, a sudden shock wave, and for this reason the
names of Teller and Bethe and Zeldovich are connected
with the temporal evolution of this disturbance. The ini-
tial displacement can also be created by a short laser pulse
or by an exoergic chemical reaction that selectively dis-
poses the energy as vibration of the products. The time
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evolution that physical chemists call first order kinetics is
what statistical mechanics calls a classical) master equa-
tion [1] description. For the particular case of vibrational
relaxation the master equation has been thoroughly an-
alyzed in a series of papers beginning with Montroll and
Shuler [2,3].

Mathematically, that the rate of change of the state
variables depends only on their current values means that
we deal with a Markovian stochastic process.

Our purpose is to establish a correspondence between
the kinetic evolution as described by a master equation
and the sequential operation of a linear logic machine. It
is an obvious characteristic of chemical kinetic processes
that their evolution depends on their present state. For
computer science this is a key consideration because it al-
lows us to define machines whose action depends not only
on the input but also on the state of the machine. This
is known as a finite state machine [4] or finite automata.
A finite state machine is inherently more powerful than
the, so-called, combinational machines, such as the famil-
iar AND or OR logic gates, where the outputs are a com-
bination of the inputs only and do not depend on what
state the machine is in.
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In this paper, we put the emphasis on the correspon-
dence between the physicochemical process and the logical
finite state process. This discussion is needed because the
people who deal with logic variables recognize explicitly
what natural scientists know very well but tend to forget
about namely that the result of a measurement can only
be specified to a finite precision. When one takes this into
account there are only a finite number of possible states
of the machine. These states are the memory of the ma-
chine. In simple terms the finite state machine combines
the inputs with the contents of its memory to provide an
output. We show a very large number of memory states is
provided by a set of coupled chemical processes.

We here discuss the correspondence between chemical
kinetics and finite state machines by emphasizing first or-
der kinetics because this corresponds to a linear machine.
Over and above the familiar advantages of a finite state
machine, we consider that the linearity of the machine
provides a further essential property in that it allows for
parallel computation. It is this parallelism that is our ulti-
mate motivation. But to take full advantage of it requires
some additional mathematics and so, in our first paper
on the subject, we limit consideration to showing that we
can establish a linear sequential finite state logic operation
and that it operates in a parallel manner.

Combinational circuits for binary (or Boolean) logic
based on physicochemical systems not in equilibrium have
been discussed for sometime [5]. Like the solid state de-
vices that such circuits seek to emulate, the input or out-
put are assigned to have two possible values. We can think
of the possible values as ‘on’ or ‘off’ or 0 or 1, etc. In chemi-
cal kinetics, if we identify the value with the concentration
of a species, the restriction to binary values requires that
we confine the observation to the question if a species is
present or it is not. It is possible to design kinetic schemes
that can robustly meet such desiderata [6]. It is however
not an easy condition to satisfy and so in this paper we
remove this strong requirement. We show how to use the
value of the concentration as measured, as a word of the
language of logic. Much of the algebraic part of this paper
is the development of the machinery necessary for doing
so. In essence we generalize from distinguishing between
two alternatives, say, T or F (for true or false) to more
alternatives. The concrete example we discuss below has
five alternatives that we represent as the numbers 0, 1,
2, 3, 4. To keep this paper as simple as possible we shall
use words of just one digit or, equivalently words of one
letter. This restriction means that in our example a mea-
sured concentration has to be assigned to one of the five
possibilities 0, 1, 2, 3, 4. If we measure the fraction of
systems in a given physical state (= the probability or
the mole fraction of the state), it requires that we break
the interval of possible answers, which are in the range 0
to 1, to 5 bins. In principle one can measure to a higher
precision and the choice of 5 possibilities is just an exam-
ple. It can be a higher number or we can use words of
more than just one letter so that the probability is speci-
fied by two significant digits or even three, etc. What we
cannot admit are variables with infinite precision. But the

reality that we all recognize is that unlimited precision is
a fiction and that a result of a measurement has to be
represented by a finite number of significant figures. To
discretize the mole fraction we use a procedure motivated
by the modular mathematics that is employed to describe
the operation of finite state machines, as is discussed in
Section 3. However one can devise alternative schemes to
‘bin’ the concentrations.

2 Vibrational relaxation: the Landau-Teller
model

The physical system we discuss is one of the best-studied
stochastic processes, the vibrational relaxation of diatomic
molecules in a dilute environment [7]. The molecules
change their vibrational state by a relatively rare pertur-
bation by the medium. The fraction of molecules occu-
pying the different vibrational states at the time t can be
arranged as components of a vector P(t). The time depen-
dence of the concentrations satisfies a master equation [1]

dP (t)/dt = AP (t) . (1)

The rate matrix A describes the rate of transitions be-
tween the vibrational states and is based on the early
work of Landau and Teller who showed that for weak cou-
pling to the medium only neighboring vibrational levels
are coupled. Following Montroll and Shuler [2,3] we trun-
cate the set of states available to the oscillator so that
the vibrational quantum number is limited to the range
ν = 0, . . . , n − 1. Within the Landau-Teller model, equa-
tions (1) are

dPν/dt = κ
{
νe−θPν−1 −

[
ν + (ν + 1) e−θ

]
Pν

+ (v + 1)Pν+1

}
, ν = 0, . . . , n − 2

dPn−1/dt = κ
{
(n − 1)e−θPn−2 −

[
n − 1 + αne−θ

]
Pn−1

}

(2)

where θ = hν/kT is the effective temperature and κ is
a rate constant that sets the time scale. Physically κ is
determined by the strength of the coupling between the
molecules and the medium that acts as a heat bath. α is a
measure of any loss of probability due to the system being
open. The simplest example is loss of vibrationally most
excited, ν = n molecules by dissociation. We intend to
describe a closed system so that for us the choice is α = 0.

In the numerical example below we allow only three
vibrational states, so that the population vector P has
only n = 3 components. This is already sufficient to give
rise to a rich structure and yet the rate A matrix is only
3 by 3 so that the matrix operations that we require can
be easily checked by hand. A larger number of accessible
vibrational levels is perfectly possible and the temporal
evolution of vibrational ladder of states that can be mim-
icked by Landau-Teller kinetics with n > 30 states has
been reported [8,9].
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In the language of chemical kinetics the master equa-
tions (2) are of the first order because we take the di-
atomic molecules to be diluted in their environment so
that molecule-molecule collisions are rare and can be ne-
glected. For this case the rate matrix A is independent
of the state of the diatomic molecules and the rate of
change of the population of the different states is lin-
early proportional to the populations themselves. In tech-
nical terms the master equations are linear because the
rate matrix A is independent of the state of the system
so that if P and Q are two vectors of populations then
A (P + Q)= AP+AQ. We reiterate that the linearity is
a statement about the physics and that one can discuss a
gas composed of diatomic molecules with a lower concen-
tration of the buffer gas or even without a buffer [10,11].
The kinetic equations will then not be linear but they will
still provide a basis for logic operations, e.g., [12]. In this
paper, we center attention on linear systems because they
offer a potential for parallelism.

The master equation (1) is here written for a closed
system. In other words, there is no inhomogeneous term
representing pumping (or draining) from the outside
world. This will be shown below to correspond to a, so-
called [13], autonomous mode of operation of the sequen-
tial logic machine. To describe input and output to the
machine we need to go over to an open system. We intend
to do so but not in this introductory paper. Finally, a more
technical comment. We here assume that the number of
diatomic molecules in our experiment is large enough for
the law of large numbers to apply. This means that we
will not observe an occupation of a vibrational state that
is different from the probability of that state. In the long
term we will want to go to small systems containing only a
few molecules. Fluctuations are then possible. It is known
how to generalize the master equation so as to allow a,
so-called, stochastic description [2,3,14]. In this introduc-
tory account we assume that the sample is large enough
that the conventional tools of chemical kinetics apply.

The transition probability matrix A does not depend
on time. It is a non symmetric matrix specified by equa-
tions (1) and (2). Physical considerations restrict the
matrix in equation (1) as follows [15]. For any current
vector of probabilities P(t) we want the vector at the
next time step to also be normalized. Since P(t + δt) ∼=
P(t) + δt (dP(t)/dt) the conservation of normalization re-
quires that

∑
ν (dPν(t)/dt) = 0. From the master equa-

tion, equation (1), this requires that the columns of the
matrix A have to sum up to unity,

∑
ν Aνµ = 0 for all µ.

The other key condition is that at long times the sys-
tem should relax to thermal equilibrium at the tempera-
ture θ. This is ensured if the matrix A satisfies detailed
balance Aµν exp(−νθ) = Aνµ exp(−µθ) where exp(−νθ)
is the Boltzmann factor for state ν. This means that the
matrix A can be brought to a real symmetric form by a
similarity transformation and therefore can be diagonal-
ized with real eigenvalues. The equilibrium vector, whose
components are exp(−νθ)/Q, Q being the sum over states
that insures normalization, is the eigenvector of the ma-
trix A that corresponds to the eigenvalue zero. Explicit

expressions for the eigenvectors as well as the necessary
distinction between right and left eigenvectors can be
found, e.g., in [15].

From equation (1), the vector, P(t), whose components
are the probabilities of the different vibrational states, ν =
0, . . . , n − 1 at the time t can be expressed as

P (t) = exp (At)P (0) (3)

where P(0) is the corresponding vector at the initial point
in time, t = 0. Note that because the matrix A is inde-
pendent of the state of the machine, equation (3) is a
linear law such that if and pb are fractions that add to
one, pa + pb = 1,

paPa (t) + pbPb (t) = exp (At) (paPa (0) + pbPb (0)) .

The next two sections prepare the background for estab-
lishing a correspondence between the temporal evolution
of the relaxation of the mole fraction of the different states
of the molecule as described by equation (3) and the se-
quential operation of the logic machine. We deal with finite
state machines where n is the number of states. So the cor-
respondence is between vibrational states of the molecule
and individual logic states of the machine. Our task is to
discretize the evolution such that time increases in finite
steps where each increment in time describes one cycle of
operation of the logic machine. Even before that we need
to transcribe the probabilities of the different vibrational
states of the molecule into the words that specify the logic
state of the machine. In this paper we use words of just
one letter but even so the number of letters is finite while
the mole fractions can be specified by equation (3) to as
many digits as we wish. Of course we understand that
this seemingly unlimited precision is a fiction limited ulti-
mately by the necessarily finite number, N , of molecules
in our system so that a mole fraction can only be known
to within 1/N . Before that there are all sources of noise in
the measurement of the concentrations. But in chemical
kinetics we do adhere to the fiction that concentrations
can be known to any desired precision. The first task we
address is to remedy this and to do so we need to carry
out arithmetic in a finite field.

3 On finite fields

Linear sequential machines [4,13,16,17] are digital ma-
chines that operate on finite fields of integers. Many of
us a re more used to work with the fiction of observables
whose values can be specified to as many significant fig-
ures as we care to. Finite fields, while not as familiar, seem
to us to offer a better representation of physical reality be-
cause numbers are only known to a finite precision. Finite
fields of integers are also known as Galois fields and the
most common Galois Field is GF(2), the finite field of the
binary numbers 0 and 1. In GF(2) addition and multi-
plication are defined modulo 2. Addition corresponds to
an XOR logic gate and multiplication to an AND gate.
For a finite field of order p, GF(p), addition and multipli-
cation are defined modulo p. When p is a prime number
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one can also define an inverse so that the integers mod-
ulo p form a finite field with p elements, 0, 1, . . . , p − 1.
a = b in GF(p) means that a ≡ b mod p which says that
a − b is divisible by p, [18,19]. Then, a and b are said to
be “congruent modulo p”. To make a web search for the
procedure note that the arithmetic of congruence is what
is known as modular arithmetic. x, the modular inverse
of a is defined by ax = 1 mod p. Note that in modular
arithmetic the inverse of p is 0. Several readily available
packages for doing symbolic operations implement modu-
lar arithmetic. We chose to work with the Mathematica
(version 5.1) software [20] but for the example that we
implement below all the operations are easy enough that
they can be done by hand.

Galois fields can be extended to pm elements, where
m is the number of integers in a sequence where each
entry in the sequence is drawn from the integers mod-
ulo p. As an example consider the field GF(23). There are
eight possible sequences of 3 integers, each of them being
0 or 1, namely (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1),
(1, 0, 1), (1, 1, 0), (1, 1, 1). In this paper, we keep things
as simple as the subject allows by developing an exam-
ple using sequences of a single integer, m = 1. As we will
discuss below with n physical levels and a Galois field of
order p there are pn states of the machine. This number
can be quite large. We are however aware that one can
have m larger than unity and so end up with the even
larger number of pnm states at our disposal. At the same
time we should note that a large number of states is not,
by itself, sufficient for a fast throughput. We also want
rapid transitions between the states and this is governed
by the constant κ of the kinetic equations (2).

In the example below we take the very conservative
estimate of p = 5 different values for the state of the logic
machine. It is a conservative estimate because all that we
need to ask for from the experiment is to distinguish be-
tween 5 alternative values for the logical state. This re-
quires that the experiment determines the first digit in the
value of the mole fraction of a vibrational level. Of course,
it can be possible to achieve better experimental preci-
sion but for distinguishing between five alternatives the
ten possible one digit fractions are enough. There are sev-
eral ways whereby one can establish the correspondence
between the experimental reading of the mole fraction of
the vibrational state ν and one of the 5 values of the log-
ical state of the state ν of the machine. Intuitively it is
clear that the value p = 5 allows for some margin of error
in the experimental value and that there are different ways
of binning the experimental values that are proper frac-
tions into five mutually exclusive and inclusive bins. We
chose the mathematical procedure known as affine ratio-
nalization bracketing [18] to a specified number of digits.
It is implemented in the Mathematica 5.1 software pack-
age [20]. What this procedure does is to provide a fraction
in a rational form that approximates the given fraction to
a pre-specified number of digits. Why affine? Because the
experimental state vectors are normalized and we want to
preserve this property. To get the logic vectors we need
to take one more step. Given a rational fraction we gener-

ate an integer between 0 and p by expressing the fraction
modulo p. We shall use p = 5 and, as an example, the ra-
tional fraction 1/9 has the value, modulo 5, of 4 because
9 = 4 mod 5. The transcription is easy for such ratio-
nal fractions that are of the form a/4k, because modulo 5,
1/4 = 4. We cannot use fractions of the form a/5k because
in modular arithmetic the inverse of 5 modulo 5 is 0.

To make the numerical example simple enough to be
checked by hand we limit the machine to three logic
states n = 3. This requires from the experiment to de-
tect the mole fractions of the first three vibrational levels,
ν = 0, 1, 2. For p = 5 there are therefore pn = 53 = 125
possible states of the machine. Each logical state vector
of the machine, written as a row vector of n = 3 compo-
nents, has the form (m, n, o) where each letter is one of
the 5 integers between 0 and 4. As an example we list a
few states as column vectors

⎛

⎝
1
0
2

⎞

⎠ ;

⎛

⎝
1
4
2

⎞

⎠ ;

⎛

⎝
2
0
3

⎞

⎠ ;

⎛

⎝
1
4
1

⎞

⎠ ;

⎛

⎝
0
3
1

⎞

⎠ . (4)

Only a subset of logical states correspond to physical
states that are normalized, that is whose sum of com-
ponents = 1 modulo p. Normalized states are shown in
equation (16) below. It is therefore worthwhile to com-
ment that the machine uses all the logical states and that
this is made clear when the action of the machine operat-
ing in a parallel mode is examined. As an example, equa-
tion (20) below shows three very useful logic state vectors
in column format and the first two vectors are normalized
to zero.

4 On the exponential number of logic states

Temporal evolution of vibrational ladders of states that
can be mimicked by Landau-Teller kinetics with n > 30
states have been reported [8,9]. Even for the conservative
values of p = 5 and m = 1 this corresponds to over 1021

memory states of the machine!
Quantum computing [19,21] is also linear but it is lin-

ear in the amplitudes rather than the linearity in the prob-
abilities in the quasiclassical scheme that we use (we [12]
refer to it as quasiclassical because we use discrete quan-
tum states but neglect interference so the time evolution
is described by a master equation). Quantum computing
uses two state systems and achieves massive parallelism by
coupling systems so that instead of a single integer a word
is made up of m integers that are the quantum numbers
that are needed to specify a basis state for the combined
system. We here use just a single integer but we allow
more than 2 levels. Even for m = 1, this allows the expo-
nentially large pn number of states. Quantum aficionados
will object that the energy of the system increases with
the number of levels. But I−2 in solution or in clusters [9]
does exhibit fully reproducible relaxation kinetics up to
n = 30 or even higher. It is possible to couple vibrational
ladders by intermolecular transfer [11] and this allows us
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to use words of more than one letter [12]. It is also pos-
sible to couple different vibrational ladders of the same
molecule, what chemists know as IVR (intramolecular vi-
brational redistribution) [22]. A word is then the sequence
of quantum numbers needed to specify a (zero order) state
of the molecule. Time evolution via IVR also allows for
faster transitions between states. We reserve the doubly
exponential potentialities of pnm states to future work.
Another option is to allow not only for energy but also for
charge and/or atom transfer [7,23] as means of enlarging
the repertoire of states that are available.

An essential difference in the scaling between quan-
tal and quasiclassical number of states should be noted.
A quantum computer operating on an n level system, (a
qubit is n = 2) and using p addressable states will scale as
np to be contrasted with the pn scaling that we achieve.

5 Linear sequential machines

A sequential machine is defined [4,13,24] in terms of how,
in any given step, the current input and the present state
(vector) of the machine determine the output and the next
state of the machine. Machine time τ is measured by inte-
ger values where one unit is one step in the operation of the
machine. As shown by the examples in equation (4) it is
convenient to represent the input i(τ), the state q(τ) and
the output z(τ) as vectors. The machine is a finite state
machine because the state vector q(τ) has a finite num-
ber, n, of components. The values of components of each
column vector are selected from the Galois field, namely
the values are integers modulo p. The correspondence with
the physical stochastic process is made by taking the di-
mension of the vectors to be equal to the number of levels
of the physical machine, i.e., the number, n, of states cou-
pled by the kinetic scheme, cf. equation (2). The entries in
the state vector are established by the procedure of affine
rationalization as discussed above.

The three operations of a linear logic circuit are mul-
tiplying by a constant, addition and a delay element that
steps the value of the integer-valued time τ . All these op-
erations are performed modulo p. Since the operations are
linear, a linear sequential machine obeys the law of su-
perposition, like a linear filter, of which it is the digital
analog. The equations for the next state q(τ + 1) and the
output z(τ) can be written in matrix form. For the special
case of a closed system, meaning that there is no external
input, these equations are

q (τ + 1) = Tq (τ) , z (τ) = Cq (τ) no input. (5)

The matrix T is the state transition matrix and C is state-
output matrix. The dimensions of the matrices in equa-
tion (5) must conform to the dimensions of the input and
of the state vectors. For example, the state transition ma-
trix T must be n-by-n. For a linear system the matrices T
and C are given and are independent of the state of the
machine.

A linear sequential machine operated as in equation (5)
is said to be in an autonomous mode. Physically it means

that once the initial state of the machine is specified there
is no further input. The corresponding stochastic process
operates as a closed system and it is the change of state
that is experimentally being monitored. Both the physical
process and the machine can also (linearly) respond to an
external input that is a function of time.

In this paper, we limit consideration to the au-
tonomous mode of a sequential finite state machine for
which

q(τ + 1) = Tq(τ). (6)

It is to be emphasized however that it is physically pos-
sible to apply an input during the time evolution and/or
to monitor an output (e.g., the IR fluorescence from the
excited, ν ≥ 1, vibrational states). It is only in this pre-
liminary report that we limit considerations to the au-
tonomous response.

6 The state transition matrix: physics
and logic

It is now necessary to distinguish between the physical and
logical definitions of the state transition matrix T. The
matrix T is defined in equations (5) or (6) as the matrix
that is to operate on the logical states of the machine,
states that we represent as vectors q(τ). The components
of these logical states are integers modulo p. In order that
the next logical state is also defined over the same finite
field the entries of the logical state transition matrix T
are integers modulo p and the addition and multiplication
as required by equations (5) or (6) are also modulo p. In
doing such computations it is useful to take advantage of
the result that

((
T̃mod p

)
(Pmod p)

)
mod p =

(
T̃P

)
mod p. (7)

The physical machine works with probability vectors P(t)
whose components are the fraction of molecules in the
different levels that we can monitor. We use the notation
T̃ for the state transition matrix for the physical vector
states where the tilde identifies the physical matrix. To es-
tablish a correspondence with the logic equation (6), the
physical matrix T̃ is to act for a time interval correspond-
ing to the step of the logic machine

P (τ + 1) = T̃P (τ) . (8)

The matrix T̃ has dimension n by n where n is the num-
ber of physical levels of the system. It is obtained from
equation (3) as

T̃ = exp (Aδt) (9)

where δt is the physical time step that corresponds to
one logical step of the machine. For the physical and
logical transition matrices to be conformable the finite
number n of internal states of the logic machine is the
same as the number n of levels of the physical system.
From equation (9) the elements of the physical matrix T̃
are non-negative numbers in the range 0 to 1. On the
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other hand the definition of a sequential machine, requires
that the matrix elements of the logic matrix T are inte-
gers modulo p where, as discussed above, p is a prime
number. So the logical T and physical T̃ cannot be the
same matrix. To determine these matrices for a machine
based on a physical system that is described master equa-
tion we first evaluate the physical T̃ matrix and then, in
a straightforward procedure, transcribe it to the logical
state-transition matrix T by the procedure of affine ratio-
nalization, with an explicit example provided below.

In a closed system, which is what we are concerned
with when discussing the autonomous response, the prob-
ability vectors P(t) are normalized. This immediately re-
quires that the sum of the elements in any column of
the physical matrix must be unity. Below we discuss the
rounding-off of the elements of the T̃ matrix. Also after
rounding we require that the column sum remains 1 be-
cause this is what insures that probability is conserved at
every cycle of the machine. Because this conservation is so
central to us we next prove the well-known requirement
on the column sum. Say we are at the machine time τ
so that the physical vector state is the normalized P(τ).
The state after the next cycle of the machine is P(τ + 1)
and it is determined by equation (8). To show that if the
column sums of T̃ are 1 also the next state is normalized
we compute the sum of the components of P(τ + 1)

n−1∑

ν=0

Pν (τ + 1) =
n−1∑

ν=0

n−1∑

µ=0

T̃νµ Pµ (τ)

=
n−1∑

µ=0

Pµ (τ)
n−1∑

ν=0

T̃νµ =
n−1∑

µ=0

Pµ (τ).

To relate the physical and logical machines we need to
transcribe the probability vectors P(t) to the logical vec-
tors whose components are integers modulo p. At the same
time we need to relate the physical state transition ma-
trix T̃ to the logical matrix T.

We propose to use ‘binning’ via the affine rationaliza-
tion procedure as a way of transcribing the physical vector
states of the machine to the logical vector states of the ma-
chine. In the same way we transcribe the elements of the
physical matrix T̃, elements that are non-negative and are
in the interval 0 to 1, to obtain the logic matrix T. The
procedure is implemented in two steps. First we determine
a rational approximation that recovers a fraction to within
a specified number of digits. Then, to go to logic states we
express all rational fractions modulo 5.

After k steps the logical state of the machine for an
autonomous (no input), mode of operation is given by a
k-fold iteration of equation (6). When q(0) is the initial
state of the machine

q (k) = Tkq (0) . (10)

7 Implementation of a linear sequential
machine by a 3-level Landau-Teller model

In order to keep the arithmetic relatively easy to follow the
implementation of the Landau-Teller transition matrix is
on a three level system, ν = 0, 1 and 2. The structure of
the matrix A (see Eq. (2) above) is:

A =

κ

⎛

⎜
⎜
⎝

− exp(−θ) 1 0

exp(−θ) − (1 + 2 exp(−θ)) 2

0 2 exp(−θ) − (2 + 3α exp(−θ))

⎞

⎟
⎟
⎠ .

(11)

This matrix A is of rank 3, all its eigenvalues are negative
and when there is no loss α = 0 and the highest eigenvalue
is zero. The eigenvector corresponding to the eigenvalue
zero is the vector of populations at equilibrium.

The matrix T̃ = exp (Aδt) is specified by two param-
eters, the value of exp(−θ), that depends on the reduced
temperature, and the value of the unit time interval. The
matrix quoted in equation (13) below uses exp(−θ) = 0.05
and κδt = 0.7.

Lastly we need to choose the precision to within which
the machine operates. This is specified by the value of
the prime integer p. It needs to be large enough that the
elements are not too much rounded off so that the physics
of the process is preserved. p = 5 appears to be a small
yet acceptable value. The physical matrix T̃ = exp (Aδt)
with A as above with elements rounded to two significant
figures is

T̃ =

⎛

⎜
⎝

0.98 0.49 0.25

0.02 0.49 0.49

0 0.02 0.26

⎞

⎟
⎠ . (12)

It is transcribed to the logical form by first applying an
affine rationalization to each (normalized) column of the
matrix leading to the rational fraction form for the phys-
ical matrix

T̃ =

⎛

⎜
⎝

1 1/2 1/4

0 1/2 1/2

0 0 1/4

⎞

⎟
⎠ . (13)

For either equations (12) or (13) the sum of each column
of the T̃ matrix is unity. As a check of the procedure of
rounding-off one can compute the matrix T̃ to three sig-
nificant figures and applied an affine rationalization to one
significant figure. This procedure recovers equation (13).
The procedure guarantees that the resulting logical T ma-
trix has its column sum as unity. Then, if we operate with
the logical matrix on a vector normalized to 1 mod 5, we
keep normalization.

The logical T matrix is the physical transition matrix
modulo 5. Making use of 2×3 = 1 mod 5, 4×4 = 1 mod 5
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and 2 × 4 = 3 mod 5, equation (13) yields

T =
(
T̃

)
mod 5 =

⎛

⎝
1 3 4
0 3 3
0 0 4

⎞

⎠ . (14)

For higher values of p than p = 5 one can check the arith-
metic using the Mod and PowerMod commands of for ex-
ample the Mathematica 5.1 software [20].

The physical equilibrium state is the eigenvector of T̃
that has the eigenvalue 1. Written in transpose form the
equilibrium state vector of the matrix T̃ is found to be
(1, 0, 0). We have computed the matrix for a not high tem-
perature, exp(−θ) = exp(−hν/kT ) = 0.05, the partition
function Q = 1+exp(−θ)+exp(−2θ) � 1 is rounded off to
unity and the rounded-off Boltzmann vibrational distribu-
tion for three vibrational states has all the population in
the state ν = 0. In order that we do not at long times lose
the population in the higher vibrational states by round-
off we need to take the value of exp(−θ) to be far larger.
This implies operating at higher temperatures and then it
does not make physical sense to truncate the population
vector to three levels. For a harmonic system the equilib-
rium population in level ν is exp(−νθ)/Q. So no matter by
how much we decrease θ, there will be higher vibrational
states whose equilibrium population will be small.

Any initial population vector that is not an equilibrium
state upon repeated action by the T̃ matrix will approach
equilibrium. For example, starting from the state most in
disequilibrium (0, 0, 1), the sequence of steps of action by
the transition matrix T̃ of equation (13) is

⎛

⎜
⎝

0

0

1

⎞

⎟
⎠

T̃−→

⎛

⎜
⎝

1/4

1/2

1/4

⎞

⎟
⎠

T̃−→

⎛

⎜
⎝

9/16

6/16

1/16

⎞

⎟
⎠

T̃−→

⎛

⎜
⎝

49/64

14/64

1/64

⎞

⎟
⎠

T̃−→

⎛

⎜
⎝

225/256

30/256

1/256

⎞

⎟
⎠ . (15)

We actually do not need to go on because to the speci-
fied round-off precision the population has reached equi-
librium.

What we now show is a concrete example of the
transcription between the physical system and the logic
machine. Specifically we show that the sequence of logic
states obtained by action of the logic T matrix on an ini-
tial logic state vector of the machine is the same as the set
of logic state obtained by transcribing the physical state
vectors as given in equation (15) to logic state vectors.
This equivalence is guaranteed by the rules of modular
arithmetic and specifically the definition of an inverse and
the rule given in equation (7). Even so, the result is rather
startling and the reason we chose the low value of 5 for the
modulo and used vectors of only three states is to enable
the reader to check our arithmetic by hand. Modulo 5,
4 is the inverse of 4, 4 × 4 = 1, so equation (15) mod 5

generates the sequence of vectors, that are, as expected,
normalized mod 5

⎛

⎝
0
0
1

⎞

⎠ T−→
⎛

⎝
4
3
4

⎞

⎠ T−→
⎛

⎝
4
1
1

⎞

⎠ T−→
⎛

⎝
1
1
4

⎞

⎠ T−→
⎛

⎝
0
0
1

⎞

⎠ . (16)

One can easily check that the same sequence is obtained
by acting on the initial vector with the logic T matrix of
equation (14).

Unlike the physical machine where the vector states
evolve towards equilibrium, the logic states recur. This
has to be so since there are only a finite number, pn, logic
states. Therefore after some finite number K of logic cycles
equation (10) must return us to the starting point. In our
example there are 125 logic states but the state (0, 0, 0)
does not change under T. Therefore K = 124 or a divisor
of 124. From equation (16) we see that for our machine
there is a cycle of length 4. There is also a cycle of length 2,
for example

T2

⎛

⎝
2
3
1

⎞

⎠ =

⎛

⎝
1 2 4
0 4 1
0 0 1

⎞

⎠

⎛

⎝
2
3
1

⎞

⎠ =

⎛

⎝
2
3
1

⎞

⎠ . (17)

While the iteration of the physical machine as specified
by equation (8) can go on and on producing new physical
states, beyond a certain point these are not regarded by
the machine as new states. The reason is the keeping num-
bers to modulo p and the round-off that it implies. After
K iterations the physical states become indistinguishable
modulo p. We can see that by comparing the 0th and 4th
physical states in equation (15).

8 Towards parallelism: the companion matrix

The linearity of the machine we discuss means that it can
operate on a linear combination of states and the result
is a linear combination of the operation on the individual
states. Specifically, if there are n physical levels so that
the state vectors P(t) are n dimensional, there are n in-
dependent vectors that provide a basis meaning that any
state vector P(t) can be expanded as a linear combination
of n components

P(t) =
n∑

j=1

pj(t)ej . (18)

Or, in component form

Pν(t) =
n∑

j=1

pj(t)(ej)ν . (19)

The action of T̃ on a physical vector is thus a linear com-
bination of its action on the basis vectors ej , j = 1, . . . , n.
The n weights pj can be computed by taking the n scalar
products eT

j · P(t) where the superscript T denotes the
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transpose. If the basis vectors can be taken to be orthonor-
mal we have the familiar simple result pj(t) = eT

j ·P(t). If
we take the basis vectors to be eigenvectors of the T ma-
trix then, because the transition matrix is not symmetric
but does satisfy detailed balance one needs to work with
the biorthogonal right and left eigenvectors [15]. Then, if
fj is the jth left eigenvector (and as such it is necessarily
a row vector), pj(t) = fj · P(t). By the properties of con-
gruence, modulo p the physical matrix in rational form
and logic matrix have the same set of eigenvectors and
eigenvalues.

Equation (19) defines what is parallelism: monitoring
the temporal evolution of the population of a particular
physical level is equivalent to n logic simultaneous com-
putations. Each individual computation is the sequence of
vectors generated by the action of the logic matrix on a
basis vector. For the logic matrix given by equation (14)
the three eigenvalues are 4, 3 and the logic right and left
eigenvectors are

⎛

⎝
3
4
3

⎞

⎠,
(
0 0 3

)

eigenvalue 4

;

⎛

⎝
3
2
0

⎞

⎠,
(
0 4 3

)

eigenvalue 3

;

⎛

⎝
1
0
0

⎞

⎠,
(
1 1 1

)

eigenvalue 1

. (20)

The format in equation (20) is chosen such that if the
coma is replaced by a matrix product then one gets the
projection matrices on the three eigenvalues.

Progress in experimental technology allows us to go
beyond parallelism to massive parallelism. This is made
possible by the experimental ability, using an array detec-
tor, to simultaneously detect the population of several, up
to n, physical levels. This means that it is possible to per-
form up to n2 computations in parallel. Even beyond this
it is a reality to think of the application of time resolved
multidimensional vibrational spectroscopy [25] to logic.

There are at least three obvious choices for a set of
basis vectors. One possibility as discussed above are the
eigenvectors of the T̃ matrix. These are necessarily the
same as the eigenvectors of the A matrix. These vectors
have been discussed in detail [1,2,15] and we hope to re-
turn to their concrete application as a computational basis
in the present context in a forthcoming paper. A second
choice is the, so-called, Krylov basis as used extensively
in Lanczos based applications [26]. These vectors are de-
fined by starting with some vector v and generating the
n independent vectors v, T̃v, T̃2v, . . .

A third and related choice of the basis used to de-
scribe the computation is the, so-called, standard basis
εj , j = 1, . . . , n where the components of εj are all zeros
except for a unity in position j. This is the basis that we
adopt in order to discuss the logic circuit of our machine.
This choice is a natural one because the T matrix for
the Landau-Teller process has not degenerate eigenvalues.
Therefore the characteristic polynomial ϕ(x) of T, defined
as |T − xI| = 0 has n distinct roots. Given T we compute
the polynomial and write it as

ϕ (x) = xn − an−1x
n−1 − . . . − a1x − a0. (21)

From the coefficients of the characteristic polynomial as
written in equation (21) one constructs the companion
matrix Tc

Tc =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 0 · · · 0

. . . . . .
0 · · · 0 1
a0 a1 a2 · · · an−1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

. (22)

The matrix T and its companion matrix are related by
a similarity transformation: T = S−1 Tc S. Therefore
rather than regarding T as the state transition matrix
for the states q of the machine, we can regard Tc as the
state transition matrix for the states q̂ = S−1q of the
machine. The companion matrix plays a key role because
Tc is the transition matrix for the machine working with
the computational basis that we chose. What this means
is that the action of the machine is represented as the
matrix equation

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

q̂1 (k + 1)
q̂2 (k + 1)

...
q̂n−1 (k + 1)
q̂n (k + 1)

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 0 · · · 0

. . . . . .
0 · · · 0 1
a0 a1 a2 · · · an−1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

q̂1 (k)
q̂2 (k)

...
q̂n−1 (k)
q̂n (k)

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

. (23)

In component form this reads

q̂1 (k + 1) = q̂2 (k)
q̂2 (k + 1) = q̂3 (k)
...

q̂n−1 (k + 1) = q̂n (k)
q̂n (k + 1) = a0q̂1 (k) + a1q̂2 (k) + . . .

+ an−2q̂n−1 (k) + an−1q̂n (k) . (24)

We are now in a position to construct an actual logical
circuit. In the literature of linear machines the circuit we
introduce is known as the ‘canonical form’ [13,17] of the
linear machine. What we do not do in this paper is to
connect to the theory of factorization of polynomials. The
motivation for making this connection is that factorization
is regarded as a ‘hard’ computational problem. Yet we
believe that we know how to make the connection and we
intend to do so in a separate paper where we allow for
input to the machine.
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9 A logic circuit

The three operations of a linear logic circuit are multi-
plying by a constant and addition both of which are per-
formed modulo p and shifting the cycle time τ by one or
more units. All these operations are linear.

To write down the circuit we make the convention that
the arrows are the order of operations. With reference to
equations (24) we see that after one cycle q̂1 (k + 1) =
q̂2 (k) and similarly for all others up to n−1. Each of these
actions is known technically as a (unit) delay [4,16,24].
Therefore in one cycle the circuit shifts the content of the
memory cells by one unit, an action known as a ‘shift
register’ [4,13,17,24]. For the last memory cell the up-
dated value is obtained by multiplication of the content of
each memory entry and addition of the results q̂n(k+1) =
a0q̂1(k)+a1q̂2(k)+. . .+an−2q̂n−1(k)+an−1q̂n(k). The sum
is fed back into the last memory cell. This is schematically
shown in Figure 1. In summary of Figure 1, the companion
matrix is the (so-called, canonical) representation of the
sequential linear machine and the corresponding circuit is
as shown. Each of the n physical levels plays the role of a
memory unit for the machine, capable of storing an integer
modulo 5. Each memory unit is shown as a delay element
in Figure 1. The delay sequence is drawn in Figure 1 as
an arrow leading from q̂j (k) to q̂j−1 (k). The contents of
the memory cells for j = 1, . . . , n−1 are shown multiplied
by the required coefficient, added and fed back to the last
memory cell. Only the nth delay element is affected by
the feedback information.

Another simple representation of the logic circuit is ex-
pressed in terms of the transpose of the companion matrix
(Eq. (22)), TT

c ,

TT
c =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0 0 0 · · · a0

1 0 0 0 · · · a1

1
. . . . . .

0
. . . 0 an−2

0 0 0 1 an−1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (25)

When we write down the action TT
c on the current state

vector, as is done for Tc in equations (24), we see that the
transpose matrix leads to a circuit known as a multi-adder
shift register [24] shown in Figure 2. TT

c is also related to
the matrix T by a similarity transformation. Therefore
in general, the matrix T can be realized either as a shift
register or as a multi adder shift register.

The characteristic polynomial, ϕ(x), the logic T ma-
trix, equation (14), is

ϕ (x) = 4x3 + 3x2 + x + 2 (26)

ϕ(x) can be factorized as

ϕ (x) = (x + 4) (x + 3) (x + 1) = (x − 1) (x − 2) (x − 4) .
(27)

The result (26) can be checked by finding first the char-
acteristic polynomial of the physical matrix, ϕ (x) =

Fig. 1. A shift register circuit for the realization of the
companion matrix Tc (Eq. (22)). The n delays, represented
as a half circle, correspond to the n internal state of the
linear sequential machine. The ⊕ means addition modulo p
and the symbol ©ai means multiplication modulo p by ai,
i = 0, . . . , n − 1. The arrows show the direction of operations.

Fig. 2. The realization of
the transpose of the compan-
ion matrix Tc (Eq. (25)) as a
multi-adder shift register cir-
cuit. The symbols used are the
same as in Figure 1.

−x3 + 1.75x2 − 0.875x + 0.125, and taking it modulo 5
recalling that, for example, (−1) = 4 mod 5, etc.

To get the companion matrix, the polynomial must be
expressed as in equation (21), or ϕ (x) = x3 − 3x2 −x− 2.
The companion matrix, equation (25), for the 3 vibra-
tional level relaxation process is therefore given as

Tc =

⎛

⎝
0 1 0
0 0 1
2 1 3

⎞

⎠ . (28)

The corresponding linear machine is shown in Figure 3.
So far we asked how to express the circuit that corre-

sponds to a given relaxation process. The limitations on
what a linear machine can do are more clearly evident
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Fig. 3. The realization of the companion matrix Tc (Eq. (22))
derived from the rounded off physical matrix T̃ (Eq. (13)) that
describes the Landau-Teller relaxation of a truncated 3 level
harmonic oscillator. The symbols used are as in Figure 1.

when we ask the complementary question, how to identify
a physical process that will realize a given circuit. The cir-
cuit is fully specified when we give its companion matrix.
The matrix is equivalent to a polynomial. If the eigenval-
ues of the relaxation process are distinct the polynomial is
the characteristic polynomial and can be written in prod-
uct form as in equation (27). Otherwise it is the minimal
polynomial where every distinct eigenvalue appears once.
It follows that there are three types of variations in the cir-
cuit that we can achieve by changing the physical system.
First is the order, p, of the Galois field and that is de-
termined by the precision within which we can determine
concentrations. A one significant figure is certainly rea-
sonable so p = 10 is realistic. Then there is the number n,
the degree of the polynomial or the size of the companion
matrix. n is equal to or smaller than the number of dis-
tinct species that participate in the process. We need to
allow for smaller because it can be that not all the eigen-
values of the relaxation process are distinct. Last, for a
given p and n we can control the values of the n coeffi-
cients ai, i = 0, . . . , n−1 that specify the polynomial ϕ(x),
equation (21) or the companion matrix, equation (22).
The physicochemical relaxation process is specified by the
symmetric (detailed balanced) n-by-n rate matrix A, cf.
equation (1). But it is only through the changes in the
n coefficients ai of the companion matrix that changing
the nature of the relaxation process can lead to a different
machine.

10 Concluding remarks

A system evolving in time under a master equation, a
Markovian stochastic process, was shown to offer a phys-
ical realization of a linear sequential computing machine.
The Landau-Teller process as analyzed by Montroll and
Shuler is used as a concrete example. Such a system not
only computes in parallel but can do doubly so, sometimes
known as massively parallel. Establishing the connection
with the fundamentals of linear finite state machines re-
quires a transcription between the probabilities of physical
states of the system and words composed of letters from

a finite alphabet. We did so using basic notions from the
algebraic theory of Galois fields. Even machine words only
one letter long are sufficient to achieve doubly parallel pro-
cessing because a state of the machine is equivalent to an
entire probability vector of the stochastic process and the
machine has an exponentially large number of memory
states. Different logic circuits that implement the physics
are presented.
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mous referee for emphasizing the different scaling behavior of
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